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Abstract

We present a numerical approach able to capture the dependence of the optimal shape profiles of thermal fins on the

conductivity parameters. We consider the two-dimensional cross-section of a periodic array of fins and involve the third

dimension via the thermal boundary layer. The highly conductive fins converge to ‘‘sharp-pointed’’, narrow base shapes

while the low conductivity ones prefer blunted, wide base fins. The optimal shapes we obtain are similar to the shapes of

intestinal villi and stegosaurus plates. A meshfree method, coupled with a gradient-based optimization algorithm, is

used to handle the significant shape changes from a simple, generic initial guess to the final, optimal shape. We reach

the optimal shapes without remeshing.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction and paper organization

Optimal heat-sinks are very important from a tech-

nology point of view (see e.g. [1–3]). The cooling fins

that from heat-sinks were traditionally studied for

mechanical engineering systems but in the past decades

with the advent of the computer industry, heat-sinks

have found many applications in the microprocessor de-

sign (see e.g. [4]).

Using simplifying assumptions and, in many in-

stances, reductions to one-dimensional models, analy-
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tical results can be obtained for optimal configurations

of thermal fins (see e.g. [5–8]). For more complex cases,

two- or three-dimensional heat flow, general boundary

conditions, etc. one must rely on numerical methods

for finding optimal solutions for thermal fins (see e.g.

[9] where the FEM is used). The problem of automati-

cally generating optimal shapes starting from a ‘‘generic’’

or simple shape has been, however, problematic.

One difficulty faced by numerical methods such as

the finite element method (FEM) is caused by the need

of remeshing when the mesh becomes too distorted.

Large shape changes are possible when trying to find

an optimal shape of an array of cooling fins. With the

FEM, one has to employ arduous remeshing every time

a large shape change is attempted as a possible improved

shape design. This is the case for the material derivative
ed.
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Nomenclature

Amax maximum cross-sectional area of a fin, m2

g gravitational acceleration, m/s2

Gr Grashof number

h heat transfer coefficient W/(m2K)

Lfin length of the fin, m

q heat flux density, W/m2

Pr Prandtl number

Z height of the fin, m

Greek symbols

b coefficient of thermal expansion, K�1

d boundary layer thickness, m

j thermal conductivity, Wm�1K�1

h temperature over the cross-section

h1 ambient temperature

hf average film temperature

m kinematic viscosity, m2/s
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method in shape optimization (see e.g. [10, p. 190], [11,

p. 109]). An alternative to the moving mesh in the mate-

rial derivative method is to use the fictitious domain

method which solves the shape optimization problem

over a fixed FEM mesh. A problem, however, arises

as the objective function or the constraints may loose

differentiability in this situation (see [11, p. 188]) and

convergence of gradient-based optimizers can be com-

promised.

A different approach to be used instead of the FEM

for shape optimization is presented by the newly devel-

oped meshfree methods (for review articles on meshfree

methods see e.g. [12,13]). Using these methods in the

context of the material derivative method for shape opti-

mization, remeshing is not necessary even if the discreti-

zation grid gets distorted. A meshfree method has

recently been used for optimal shape design of elastic

and thermoelastic solids in [14–17], and the results are

very encouraging. One case in which large shape

changes––from a simple, generic geometry initial design

to the optimal design––are involved is that of systems

governed by conduction–diffusion equations. The opti-

mal shape design of thermal cooling fins or of mass-

diffusion systems provides just two such examples.

Finned surfaces represent one of the most efficient

ways of enhancing heat or mass transfer from a surface.

The most common geometry used for increasing the sur-

face area is the rectangular cross-section. Triangular,

parabolic or cylindrical cross-sectional shapes (see [18,

Chapter 8]) are also used in automobile radiators, home

heating radiators, semiconductor chip packages, etc.

The fin effectiveness (the ratio of heat removed with

the fin to heat removed in the absence of the fin) and

efficiency (heat removed by the real fin versus heat re-

moved by a perfectly conductive fin) are influenced by

the convection and conductivity properties. As the con-

duction resistance goes to zero, the fin efficiency ap-

proaches one (a perfect fin), while when convection

resistance goes to infinity, the fin effectiveness goes to

zero.

In this paper we show how the competition between

the external and internal resistance to heat transfer
determines the cross-sectional optimal shape for a fin ar-

ray. A highly conductive fin in a ‘‘not-too-high’’ convec-

tive conditions prefers to extend the material away from

the base in the form of thin and sharp-pointed fins. On

the other hand, a less conductive fin in the same convec-

tive ambient tends to avoid developing sharp shapes

that cool to fast and therefore reduce the heat transfer.

These fins are expected to show round-ended fins with

wide bases as their optimal cross-sectional configu-

ration.

We provide a scheme for automatically determining

the optimal shape of a conduction–diffusion system.

We start from a shape that is very different from the final,

optimal configuration. We employ a meshfree method

and large shape changes are dealt with without

remeshing. We show that a general formulation based

on the meshfree solution of the non-linear heat-transfer

equations coupled with a gradient-based optimization

scheme is effective in determining important characteris-

tics and details of the optimal shapes for varying conduc-

tivity parameters. The context of this work is that of

laminar flow under natural convection. Other types of

conditions can be considered using the current

development.

The main contributions of this paper are:

1. We develop a 2 and 1/2-dimensional numerical

scheme based on a meshfree method capable of cap-

turing the dependence of the optimal shape on conduc-

tivity parameters for optimal shape design of cooling

fins;

2. We establish a connection between optimal shapes of

thermal systems and those of biological systems par-

ticipating in mass diffusion or heat transfer, such as

intestinal villi or dinosaur cooling plates.

The paper is organized as follows: in Section 2 we re-

view previous work. In Section 3 we give the description

of the problem, the optimization setup and the meshfree

solution of the non-linear heat transfer problem with a

convection boundary that is designable. In Section 4

we discuss the similarity between the mass and heat
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transfer systems and present numerical results for high

and low conductivity parameters. Future work and con-

clusions are gathered in Section 5.
2. Previous work

In this section we note some optimal shapes observed

in, or inspired by, natural systems. The motivation for

generating optimal shapes from simple, generic configu-

rations can be drawn from the immense variability of

forms in nature. We also review works on optimal shape

design of thermal fins.

2.1. Optimal shapes in nature

The enormous variety of shapes present in natural

systems may be attributed to the multitude of local/glo-

bal minimizers that exist. With a proper mathematical

description of the underlying physical/chemical/biologi-

cal processes coordinating the state of a natural system,

one can follow an optimization scheme similar to the

one described in this paper and be able to reproduce

the naturally occurring shapes.

One way for increasing heat or mass transfer between

two systems is to increase the surface area that partici-

pates in the transfer. Many technological applications

use extended surfaces for that purpose. Thermal cooling

fins represent just one such example. Extended surfaces

for enhanced transfer are seen in natural systems also,

for instance the intestinal villi. Plates and spines of the

Stegosaurus dinosaur functioned, apparently, as temper-

ature regulators (see [19]). The plates formed a scaffold-

ing for the support of a richly vascularized skin that

would have acted as an efficient heat exchange structure.

These fins would have functioned well as forced convec-

tion fins to dissipate heat or as heat absorbers [19]. The

particular shape of an extended surface does influence its

efficiency and the effectiveness of the entire fin array is

affected by the spacing between the periodic fins (see

e.g. [18]).

2.2. Thermal fins and meshfree methods for optimal shape

design

Finned surfaces in natural convection provide a sig-

nificant improvement in efficiency (increasing the heat

flux) compared to unfinned ones. Both the fin thickness

and the spacing between fins are determining factors

that cannot be neglected in optimizing the total fin array

heat transfer (see e.g. Bar-Cohen [5]). These two factors

influence both the efficiency of individual fins and the

number of fins that can be accommodated in a given

area.

A number of studies have attempted to find the opti-

mal configuration for a vertical fin array. Recently,
Bejan and coworkers have introduced the ‘‘constructal’’

theory (see e.g. [7,8,20,21]). Heat flow problems between

a volume and one point are treated. The optimal flow

structure for minimal global resistance is found to be a

tree. The works above-cited use simple geometries of ele-

mental regions in order to build more complex struc-

tures. They optimize the size rather than the shape.

The selected simple geometries allow for a semi-analyti-

cal one-dimensional approach, where solutions are

found for the heat-transfer equation with one spatial

coordinate. Fractal-like features are thus obtained and

their relevance to the properties of natural flow struc-

tures are discussed. Earlier studies on searching for the

optimal spacing between parallel plates under natural

convection cooling can be found in Bar-Cohen [5] and

Bar-Cohen and Rohsenow [6]. In these works, a re-

stricted one-dimensional model for heat transfer is used

for plates of rectangular cross-section only. The optimal

spacing between efficient isothermal fins is found in [6].

In [5] the case studied is that of fins whose temperature

varies with distance from the base. It is found that the

optimum fin width and spacing depend upon the fin

thickness and its thermal conductivity. Optimum design

of heat-sinks for electronic applications are discussed in,

for example, [3]. Fin flow, the number of fins, fin length

and height are allowed to vary.

In shape optimization problems where the initial

shape changes drastically to reach the final, optimal

shape, the need of remeshing is crucial in a solution

process that used the FEM or BEM as analysis tools.

In any remeshing algorithm, the transfer of data from

the old mesh to the new mesh incurs errors. We would

benefit from using an analysis tool that avoids remesh-

ing even when large shape changes are needed in the

shape optimization process.

Meshfree methods have been proposed that over-

come the remeshing problems. The element-free Galer-

kin (EFG) method [22] is a meshfree method which

has been recently employed in shape optimization prob-

lems of elastic and thermoelastic solids by Bobaru and

Mukherjee (see [16]). Shape sensitivities of elastic solids

with the EFG methods have been addressed in Ref. [15]

and for thermoelasticity in Bobaru�s thesis [14]. In [16],

the problem of optimizing an initially triangular-shaped

thermal fin for increased heat-flux through the base of

the fin under area constraints, has produced strikingly

different (and better) results than previous FEM-based

analysis (see Hou and Sheen [9]) of the same problem.

The main result obtained in [16] is the automatic sub-

division of the original fin into sub-fins in search for a

optimal shape. There is no need for remeshing, even if

large shape changes take place from on iteration to the

next.

A study of the influence of the number of design var-

iables selected in the problem�s solution was performed

in [16]. It appeared that the more design variables were
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Fig. 1. The geometry of a thermal fin. (a) A three-dimensional

cooling fin array under natural convection conditions. The base

side in the back is attached to a system at constant temperature.

(b) Unfinned (i) and finned with rectangular fins (ii) top cross-

sections of a cooling system.
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chosen to describe the shape of the designable boundary,

the more sub-fins would result at the end of the optimi-

zation process. The objective function was improved

with the increase of the number of sub-fins developed.

The increase in the surface area that was exposed to

the cooling ambient implied an increase in the objective

function value.

2.3. The thermal boundary layer and optimal shape design

The study in [17] answered the following questions:

‘‘Is there a limiting value on the number of sub-fins gen-

eration in maximizing the heat flux through the base of

the fin structure? How close can the sub-fins get to one

another and still release heat efficiently? What is the

optimal number of fins, the optimal shape and the opti-

mal spacing between them from maximum heat flux?’’

Previous results obtained in [16] indicated that the ‘‘opti-

mal’’ fin structure is one with an infinite number of fins

of infinitesimal thickness closely packed together. That

would mean that the problem is ill-posed: there exists

no solution. In [17], the above ill-posed problem is eluci-

dated. We noticed that non-existence of optimal solu-

tions is eliminated if we considered the thermal

boundary layer that forms in the ambient medium along

the fin surface. The problem was regularized by requir-

ing no overlap of the boundary layer.

The optimal shape design of cooling fins studied in

[16] and [9] considered the 2D cross-section of a triangu-

lar thermal fin. In Sections 3.1 and 3.2 of this paper we

present the approach that regularizes the ill-posed prob-

lem (see also [17]). We select a unit-cell from a three-

dimensional fin and focus in optimizing the shape of

the cross-section. The use of the third dimension is crit-

ical in regularizing the problem since we use a enforce no

overlap for the thermal boundary layer that forms at the

fin�s surface. The details of evaluating the violation of

the boundary layer overlap constraint are given in [17].

The third dimension is involved since the height of the

fin array determines the thickness of the boundary layer.

Moreover, the height of the fin determines if the natural

convection conditions give rise to laminar or turbulent

flow. We select the fin�s height such that the resulting

flow along the entire height of the fin is laminar. In

[17], a new and very efficient algorithm for eliminating

the overlap at the top cross-section of the fin array has

been introduced. The algorithm works for the case in

which the boundary is given by a function.
3. Problem description

We consider an array of vertical (z-direction), peri-

odic fins. The ‘‘base’’ of the fin (y = 0 plane in Fig.

1(a)) is attached to a system with a constant temperature

h0 = 500 K. The fin array is exposed to an ambient tem-
perature of h1 = 300 K. We assume natural convection

and the height of the fin is selected so that the flow is

laminar over the entire height of the fin. The goal is to

find the optimal shape of the cross-section of the fin

array that results in maximum heat-transfer through

its base. Naturally, a volume constraint has to be im-

posed if the problem is to be well-posed. One can notice

that if the fins are widely spaced or almost isolated, the

heat transfer rates are high but the total area exposed to

the ambient is low and this results in a low total heat

transfer for the entire fin array. If the fins are, on the

other hand, closely packed together, total fin area is high

but heat flux is low because of the thermal boundary

layer interaction between individual fins (the fins are ex-

posed to each other instead of being exposed to the

ambient temperature). An optimal spacing between the

individual fins, as well as the shape profile of the fins

is sought at the end of the optimization scheme.

The search for the optimal shape starts with a generic,

unfinned construct. The cross-section of a unit-cell for

such a system is rectangular (see Fig. 1(b)). The
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Fig. 2. The flowchart for the optimization algorithm. A

meshfree method (EFG) is used in solving for temperatures,
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changes during the optimization search do not require remesh-

ing in the EFG method.
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optimization problem is to find the best shape of the

cross-section that maximizes heat-flux while the cross-

sectional area is constrained to be less than an arbitrarily

selected value of 60% of the original rectangular area.

Using the heat-transfer equation alone in determining

the optimal shape, leads to non-existence of solutions

since we cannot account for the heating of the ambient

in the boundary layer around each fin. As a result, the

‘‘optimum’’ will be an infinite number of fins, infinitely

thin and closely packed together. As we have recently

shown (see [17]), in order to make the problemwell-posed

an additional constraint has to be added to the optimiza-

tion problem. The constraint adopted in [17] was to im-

pose no boundary layer overlap. A different constraint

is mentioned by Haslinger and Mäkinen (see [11, pp.

10–12]) which suggest constraining the length of the con-

vective boundary curve (see Fig. 1(b)). Such a constraint,

however, seems artificial. In fact, determining the optimal

length of the boundary is part of the problem here. The

boundary layer overlap constraint that we use regularizes

the ill-posed problem [23] in the sense that it eliminates

non-existence of solutions.

The focus of this paper is to apply the shape optimi-

zation scheme for materials with different conductivity

parameters and notice the effect, if any, on the optimal

shape. To this end, we consider the optimization of the

two-dimensional cross-section of the fin array by includ-

ing the thickness of the boundary-layer constraint at the

top of the fin. We work with a unit cell for a periodic

array of fins. The length of such unit cell fin has been

determined in [17]. Periodic boundary conditions on

the two sides of the fin imply no heat-flux through these

boundaries (see Fig. 1(b)).

3.1. The shape optimization setup and the boundary layer

constraint

The objective function in the optimal shape design

problem is the heat-flux density through the base, while

the constraints are imposed on the cross-sectional area

and the boundary layer overlap, as follows:

minimize F ðy1; . . . ; ypÞ ¼ �

R
C0
h
qdC

Lfin

ð� maximize heat� flux densityÞ

area constraint H 1ðy1; . . . ; yp; xÞ ¼ 1�
R
X dX

Amax

P 0;

overlap constraint H 2ðy1; . . . ; yp; xÞ ¼ 1� v
vmax

P 0;

simple bounds l6 y ¼ ½y1; . . . ; yp�6 u:

ð1Þ

Here, Lfin is the length of the design boundary and the

design variables y1, . . . ,yp are the y-coordinates of some

of some grid nodes on the design boundary C2
h. The

shape of the design boundary is determined by these
design variables (control points). We require the rest

of the discretization nodes on C2
h to change their posi-

tions so that they are on the spline function interpolating

the design variables y1, . . . ,yp. We use a shape preserving

spline, namely the Akima spline (see [24]) for the bound-

ary interpolation through the control (design) points.

Also, v is the ‘‘amount of overlap’’ and vmax a small pos-

itive number that represents a maximum allowed over-

lap. This is chosen to improve convergence and accept

shapes that produce a negligible boundary layer overlap.

In our calculations we take vmax = 0.05Lfin which is 5%

of the total length of the unit-cell base.

We use a sequential quadratic algorithm imple-

mented in the IMSL numerical library (DNCONF) to

solve the optimization problem above [25–27]. The

optimizer uses the values of the objective function and

constraints every time a new set of the design variables

is selected and during the line search. The iterative opti-

mization process follows the diagram depicted in Fig. 2.

Shape sensitivities (see, e.g. [28]) are calculated internally

by the optimizer using finite differences approximations

in an adaptive way (see [25]). The selection of finite dif-

ference gradients (sensitivities) is motivated here by sim-

plicity rather than efficiency. Results on accurate and

efficient schemes for shape sensitivities calculations

using meshfree methods can be found in, for example,

[15].

We next present a way of evaluating the boundary

layer overlap v and the objective function F in problem

(1) at each optimization iteration.

3.2. The meshfree solution for the non-linear heat-transfer

equations

During the iterations of the gradient-based optimizer

we are required to provide means for calculating the

value of the objective function and constraints. The
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temperature and heat-flux are determined by solving the

non-linear heat-transfer equation (2) below over the do-

main X, the top cross-section of the fin (see Fig. 1(b)).

Dh ¼ 0 in X

h ¼ h0 on C0
h

jrh � n ¼ �q on C1
h

jrh � n ¼ hðhÞðh� h1Þ on C2
h

8>>><
>>>:

ð2Þ

This equation is valid for laminar flow in free convection

past a vertical wall with constant temperature in the ver-

tical direction. To ensure laminar flow we have to limit

the allowable height for the fin. The height of 0.4 m se-

lected in our numerical results gives rise to laminar flow.

The boundary value problem in Eq. (2) is linear

except in the boundary condition prescribed over the

convective region C2
h. The heat transfer coefficient is a

non-linear function of the temperature on the convective

boundary. In terms of the height z of the fin, the heat

transfer coefficient is given by (see, e.g. [29]):

hðzÞ ¼ 2jPr1=2

z½336ðPr þ 5=9Þ�1=4
Gr1=4z : ð3Þ

The heat transfer coefficient depends on Grashof�s num-

ber which implies a dependence on the fin�s temperature

on C2
h, since

Gr ¼ gbðh� h1Þz3
m2

: ð4Þ

The dependency of h on hjC2
h
is more complicated

than the root-four behavior apparent from Eqs. (3)

and (4). That is because Prandtl number and the convec-

tive factor gb/m2 in Grashof�s number also vary with the

temperature h on C2
h (see Table 1 in [17] or the appendix

in [29]). The values we use for the ambient are those of

air at one atmosphere and for the range of temperatures

and conditions specified above. The ambient fluid prop-

erties are captured by the ‘‘convective term’’ gb/m2. These
properties are normally evaluated at the film ‘‘average’’

temperature hf = (hw + h1) (see [29, p. 298]) where hw is

the ‘‘wall’’ temperature, i.e. the temperature of the fin�s
convective boundary.

We solve this non-linear problem using a ‘‘fixed-

point’’ type iterative scheme. Assume that at iteration

k we have solved for the temperature field hk over the

cross-section of the fin. The solution for the temperature

field hk+1 at the next iteration is then given by the solu-

tion to the following linear boundary value problem:

Dhkþ1 ¼ 0 in X

hkþ1 ¼ h0 on C0
h

jrhkþ1 � n ¼ �q on C1
h

jrhkþ1 � n ¼ hðhkÞðhkþ1 � h1Þ on C2
h

8>>>><
>>>>:

ð5Þ

The iterations continue until khk+1 � hkk < �, with epsi-

lon a preset tolerance. This process amounts to solving a
set of linear systems that are formed by discretizing the

weak forms corresponding to the Eq. (5):Z
X
jrhkþ1 � rgdX�

Z
C1
h

�qgdCþ
Z
C2
h

hðhkÞhkþ1gdC

�
Z
C2
h

hðhkÞh1gdC ¼ 0 for any g 2 V ; ð6Þ

where g 2 V ¼ fg 2 H 1ðXÞ; g ¼ 0 on C0
h in the sense of

traceg are the test functions.

The element-free Galerkin (EFG) discretization of

Eq. (6) leads to the following linear system of equations:

MðhkÞhkþ1 ¼ fðhkÞ; ð7Þ

where the global matrix M(hk) and the right-hand side

vector f(hk) are defined as:

MðhkÞ ¼
Z
X
jK�1BTBK�T dX

þ
Z
C2
h

hðhkÞðK�1/Þ � ðK�1/ÞdC ð8Þ

fðhkÞ ¼
Z
X
QK�1/dXþ

Z
C1
h

�qK�1/dC

þ
Z
C2
h

hðhkÞh1K�1/dC ð9Þ

The symbol � above stands for the exterior (tensor)

product. The matrix B above is used to approximate

the gradient in the N-dimensional discretization space

as rhðNÞ ¼ Bĥ and is given by:

B ¼

o/1

ox1

� � � o/N

ox1

o/1

ox2

� � � o/N

ox2

2
664

3
775; with / ¼

/1

..

.

/N

2
664

3
775;

h ¼

h1

..

.

hN

2
664

3
775; ð10Þ

where /i are the MLS approximation functions. The

matrix K in (8) is accounting for imposing the essential

boundary conditions via a transformation method (see

[30]). The transformation of the shape functions is nec-

essary in the EFG method since the shape functions

do not satisfy the Kronecker delta property. Other

methods for imposing the geometric boundary condi-

tions are available (see a review in [13]). The temperature

values the nodes, hj = h(xj), j = 1,. . .,N, are expressed in

terms of some ‘‘fictitious’’ temperatures as:

hj ¼ hðxjÞ ¼
X
i

/iðxjÞĥi ¼
X
i

Kijĥi ¼ ðKTĥÞj ð11Þ

ĥ ¼ K�Th; ĝ ¼ K�Tg ð12Þ
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where ĥi are the ‘‘fictitious’’ nodal temperature values,

and Kij = /i(xj) is the transformation matrix.

The solution to the non-linear heat-transfer equation

provides the temperature profile across the fin array.

The heat-flux through the base can then be calculated,

as well at the thickness of the boundary layer given by

(see e.g. [29]):

d ¼ dðh� h1; zÞ ¼
336 Pr þ 5

9

� �
Pr2

� �1
4 z

Gr1=4
ð13Þ

The area constraint is easily determined using the

location of the design variables and the spline interpola-

tion of the design boundary. For the evaluation of the

boundary layer overlap we provide a simple algorithm

that estimates the amount of overlap using only the

x-coordinates of points on the outer limit of the thermal

boundary layer at the top cross-section z = 0.4 m (see

[17] for details). The efficient algorithm in [17], however,

is applicable only when the fin�s boundary is given by a

function. For the more general case when the boundary

is a general curve the algorithm needs modification. This

subject is currently under investigation.
4. Optimal shapes for high and low conductivity para-

meters

We select two types of materials for the thermal fin:

high conductivity materials (aluminum and copper)

and a relatively low conductivity material which has a

high melting point (titanium). We also choose a fictitious

material with a conductivity equal to unity (compare

that to the conductivity of copper, 389 W/mK at 200

�C, or of titanium of 20 W/mK at 200 �C). Thermal

cooling fins are normally made from high conductivity

materials to increase their effectiveness, but in high tem-

perature conditions, if cooling fins are required, a highly

conductive material might not be usable due to low

melting temperature point. The alternative is to use a

material that has a high melting point and, in general,

these materials have lower conductivity parameters.

The unit conductivity material presents a noticeable dif-

ference between the temperature at the base of the fin

and the temperature at the tip of the fin. In the numer-

ical tests that follow, the relative temperature change

across the fin for the optimal shape is less than 0.1%

for aluminum and copper, about 1% for titanium, and

around 13.5% for the unit-conductivity material.

4.1. Relation to optimal shapes of biological systems in

mass transfer problems

An additional reason for considering fins made from

low conductivity materials is given by the similarity of

heat and mass transfer. Many biological systems use ex-
tended surfaces to increase the exchange of heat and/or

mass with the environment. The ‘‘conductivity’’ of these

systems can be considered to be low compared to that of

highly conductive metals like copper or aluminum. For

example, intestinal villi are extended surfaces (fins) that

enhance the mass transfer of nutrients from the intestine

to the blood stream. Possible questions are: ‘‘What

determines the intestinal villi shape and spacing?’’ and

‘‘Is there any relation between the characteristics of

the mass transfer and the shape and spacing of the villi?’’

The conjecture we state is:

The shape of the intestinal villi is determined, in part, by
the mass transfer characteristics: the convection–diffu-
sion through the wall of the villus and mass diffusion

through the villus.

The steady-state equations for the incompressible diffu-

sion equation are the same as the non-linear heat-trans-

fer equations give by (2). The well-known analogy is

obtained if one operates the following replacements:
temperature h
 ()
 mass density q

thermal diffusivity j/qcp
 ()
 mass diffusivity

D

heat transfer coefficient h
 ()
 mass transfer

coefficient hm

Prandtl number Pr
 ()
 Schmidt

number Sc
Nusselt number Nu
 ()
 Sherwood

number Sh
One can extract information about optimal shape of

intestinal villi by studying optimal shape for thermal

fins. The analogy thermal fins––villi is limited, however,

by the additional biological constraints and require-

ments that have to be met by a bio-system. For instance,

the intestinal villi are not homogeneous and isotropic

materials as the cooling fins that we study are.

4.2. Numerical tests and results

A unit-cell for the fin array described in Section 3 has

been determined in [17] to have a length of about 0.05 m.

We consider a number of design variables selected on

the top side of the fin cross-section (the convective

boundary in Fig. 1(b)) equal to five. A shape-preserving

spline (see [17]) is used to interpolate through these

points and define the shape of the unit-cell fin. Increas-

ing the number of shape design variables does not

change the shape in any significant way (as long as we

use the same type of interpolation functions), and as a

result the heat-flux does not change. The boundary layer

constraint is critical in determining the unit-cell length

for the array of fins. The optimization problem that uses



Table 1

Some material properties for the selected materials

Material Melting point (K) Density (at 20 �C) (q (kg/m3)) Thermal conductivity at 200 �C (j (W/mK))

Pure aluminum 933 2702 238

Pure copper 1356 8933 389

Titanium 1953 4500 20

Unit conductivity NA NA 1
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an area constraint only, is ill-posed (see [17,31]) as it

leads to non-existence of solutions.

Material properties for the aluminum and copper

(highly conductive but with low melting points), and

titanium and the unit-conductivity material (with low

conductivity) are shown in Table 1.

In all subsequent tests we employ a grid of 31 · 31

nodes. This grid has been determined sufficient to cap-

ture with accuracy the temperature profile. The nodes

on the grid move in the direction of the width of the

fin in search for a better shape. The motion is controlled

by the design variables. For details see [17].

The optimal shape design for the thermal system

under consideration is sensitive to the initial guess due

to the existence of a multitude of local minima. Gradi-

ent-based optimization algorithms can get trapped at

these local minima. Choosing an evolutionary algorithm

instead, such as genetic algorithms or simulated anneal-

ing, may present a better chance of achieving the global

optimum. The trade-off, however, is a very significant

increase in the computational cost. The number of iter-

ations required by evolutionary algorithms to converge

is, generally, several orders of magnitude larger than

when using gradient-based methods. Here we use gradi-
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Fig. 3. Two starting guesses. (a) The ‘‘round guess’’ (RG) starting cr
ent-based optimization algorithms and vary the starting

guess in order to increase the chances of reaching a glo-

bal minimizer.

We observed that many of the various perturbations

of the flat, unfinned shape lead to poorer or similar local

minimizers to the ones obtained from the two starting

guesses described below. By using a set of different initial

shapes we have no guarantee that we reach the global

minimum (within the class functions used here for

describing the convective boundary) since there is no

analytical result available for this problem. Neverthe-

less, the results show that one or more constraints are

active at the final iteration. This is an indication that

we probably are ‘‘close’’ to the best possible shape.

We perform the following tests for each of the four

materials selected above:

• The ‘‘round guess’’ (RG): start with the initial shape

shown in Fig. 3(a).

• The ‘‘sharp guess’’ (SG): start with the initial shape

as in Fig. 3(b).

The starting and final values for the design variables

are given in columns 2 and 3 in Table 2. We also include
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oss-section. (b) The ‘‘sharp guess’’ (SG) starting cross-section.



Table 2

Optimization results for starting guesses RG and SG and the four selected materials

Material and

number of

iterations

Initial values

of DVsa (m)

Final values

of DVs (m)

Initial value

of heat flux

(W/m2)

Final value

of heat flux

(W/m2)

Area constraint

final value

Boundary layer

constraint final value

Al RGb 0.042 0.015

6 iterations 0.045 0.027 986.06 1661.26 0.73 · 10�1 0.35 · 10�6

0.050 0.050

Al SGc 0.050 0.050

12 iterations 0.0495 0.017 925.9 1729.6 0.178 �0.45 · 10�9

0.050 0.015

Cu RG 0.042 0.015

7 iterations 0.045 0.027 985.52 1660.64 0.73 · 10�1 �0.33 · 10�8

0.050 0.050

Cu SG 0.050 0.050

19 iterations 0.0495 0.017 923.44 1730.48 0.177 0.466 · 10�1

0.050 0.015

Ti RG 0.042 0.015

19 iterations 0.045 0.027 975.46 1637.42 0.73 · 10�1 0.19 · 10�1

0.050 0.050

Ti SG 0.050 0.050

18 iterations 0.0495 0.035 915.8 1314.8 �0.11 · 10�3 0.14 · 10�1

0.050 0.033

Unit-conductivity RG 0.042 0.015

8 iterations 0.045 0.0274 797.6 1280 0.74 · 10�1 �0.47 · 10�10

0.050 0.05

Unit-conductivity SG 0.05 0.015

19 iterations 0.0495 0.0275 745.1 1279 0.72 · 10�1 0.11

0.050 0.05

a DVs � design variables.
b The ‘‘round guess’’ in Fig. 3(a).
c The ‘‘sharp guess’’ in Fig. 3(b).
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Fig. 4. The optimal shape for aluminum starting with the RG

cross-section. The optimal shapes for copper, titanium and the

unit-conductivity material are the same (see data for final values

of design variables in Table 2).
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data about the number of iterations performed by the

optimizer until convergence is achieved. Notice that we

use five design variables on the designable boundary

(the top line in Fig. 3(a) and (b)) but only three values

are shown for each case in Table 2. That is because we

search for symmetrical shapes, therefore the design var-

iables d1, . . . ,d5 have to satisfy the conditions: d5 = d1
and d4 = d2. The nodes whose coordinates are the design

variables are equally spaced along the horizontal

direction.

With a round initial guess RG, the final optimal

shape for the aluminum fin is shown in Fig. 4. The opti-

mal shapes for copper, titanium, and the unit-conductiv-

ity fins are almost the same (see data for final values of

design variables in Table 2). At the final iteration, the

area constraint is not violated in any of the four materi-

als, and the same is true for the boundary layer con-

straint with the exception of copper where the value of

the violation is insignificant (on the order of 10�8).

The number of iterations required to reach these

shapes is remarkably small, in general less than 20 and

in many instances less than 10. Methods of shape opti-

mization based on evolutionary algorithms require hun-

dreds of iterations. The efficiency of our method is due,
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in part, to the use of a gradient-based optimization algo-

rithm and, perhaps even more so, to the meshfree meth-

od of solution that allows large shape changes from one

iteration to the next without remeshing.

With the ‘‘sharp’’ initial guess SG, the final optimal

shape for the aluminum and the unit-conductivity are

shown in Fig. 5(a) and (b). This is a striking result. Start-

ing from the same initial guess, with only the conductiv-

ity parameter being different, the aluminum and the

unit-conductivity material fins converge to totally differ-

ent shapes! The unit-conductivity fin converges almost
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Fig. 5. Final shapes when using the SG shape as the starting guess

starting with the SG cross-section. (b) The optimal shape for the unit

local minimizer for the optimal shape for titanium starting with the S

pointed optimal shape to which the aluminum fin converges.
to the same shape as that given by the RG shape (see

Table 2). The optimal fin for copper is identical in shape

to that of the aluminum fin, as one can see from Table 2.

We note the increase in the objective function value for

the aluminum and copper optimal sharp pointed fins

compared to the value given by the optimal ‘‘round’’

shape for the same materials. The relative increase is

around 4%.

The titanium fin gets trapped in a local minimum

shown in Fig. 5(c). The objective function value is signif-

icantly lower than the result from the RG for the same
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for the fin cross-section. (a) The optimal shape for aluminum

-conductivity material starting with the SG cross-section. (c) A

G cross-section. Note that the trend is different from the sharp-
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material. Moreover, if we place the unit-cell into a peri-

odic array of fins we will generate a large boundary layer

overlap at the ends of the each fin. The heat flux for the

fin array will be less than the sum from all fins, since

overlap of the boundary layer reduces heat-transfer.

To get out of the local minimum we could restart from

a perturbed shape. We, however, choose a different path

that can eliminate the boundary layer overlap for entire

fin array. We present this in Section 4.4.

In summary, the round-guess RG leads to a shape

that is independent of the conductivity. The SG, how-

ever, sends the highly conductive materials to a shape

that is better than the one from RG. The low-conductiv-

ity material minimum does not change between the RG

and the SG and suggests that this shape is the global

minimum for low conductivity materials. We explain

the above observations as follows: the highly conductive

material will prefer shapes that have sharp spikes since

these shapes provide large surface areas, and, due to

the high conductivity, the boundary temperature along

these spikes is high, leading to efficient heat transfer.

On the other hand, the low conductivity materials avoid

these long and narrow shapes since they would cool fast

and large boundary areas will not contribute to efficient

heat transfer. We recall that convective heat transfer is

proportional to the temperature difference between the
0 0.05 0

0

0.02

0.04

0.06

Unit—cell len

W
id

th
 (i

n 
m

et
er

s)

0 0.05 0

0

0.02

0.04

0.06

Unit—cell len

W
id

th
 (i

n 
m

et
er

s)

Out
bou

(a)

(b)

Fig. 6. Using the periodic boundary conditions for constructing the fin

shape as the initial guess. Notice the overlap of the boundary layer. (b

the initial guess.
boundary of the fin and the ambient temperature (see

Eqs. (3) and (4)).

4.3. Connection to shapes of biological systems

These observations offer a possible explanation for

the shape of some biological structures. The intestinal

villus is round and has a large base because the mass dif-

fusion inside the villus is slow relative to the mass trans-

fer between the ambient fluid and its wall. The round

shape is, therefore, the optimal shape that maximizes

the mass transfer. A comparison with the transversal

cross-section of dinosaur fins [19] can also be made.

The cross-section of these fins can be considered sharp

pointed and having a narrow base (see [32]). We infer

that the conduction of these fins, working under forced

convection conditions, was high relative to the heat-

transfer rate at the surface of the fin. The fins evolved

in this ‘‘sharp-pointed’’ cross-section in order to maxi-

mize the heat-transfer under the given conditions.

4.4. Eliminating the boundary layer overlap for the

periodic fin array

Using the periodic boundary conditions, the fin array

for aluminum looks as in Fig. 6(a) when the initial guess
.1 0.15 0.2
gth (in meters)

Outer Limit of
boundary layer

.1 0.15 0.2
gth (in meters)

er limit of 
ndary layer 

array. (a) The periodic array of fins for aluminum with the RG

) The periodic array of fins for aluminum with the SG shape as
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is the RG shape, and as in Fig. 6(b) when we start with

the SG shape.

The periodic fin shows overlap of the boundary layer

for the round guess case (see Fig. 6(a)). The values ob-

tained for the objective function in these cases are larger

than the actual, true values. In order to avoid the overlap

in these cases, we can impose an additional constraint

that requires the slope at the end points to be zero.

df ðxÞ
dx

����
x¼a

¼ 0; and
df ðxÞ
dx

����
x¼b

¼ 0

where f is the function that describes the boundary of the

fin, and x = a, x = b are the ends of the fin in the hori-

zontal direction. Numerically, this is accomplished by

imposing the two left-most and two right-most discreti-

zation nodes on the boundary, have the same y-coordi-

nates (along the fin�s width direction), respectively.

The results for the constrained slope at the ends of

the unit fin are summarized in Table 3 for aluminum

and the unit-conductivity material. The optimal shape

for aluminum is given in Fig. 7. Note that the optimal

shape for the unit-conductivity material is nearly the

same as for aluminum. The boundary constraint viola-

tion is negligible and is in the order of 10�3 for an

individual fin. For aluminum, the relative change in

heat-flux between the ‘‘optimal’’ round shape (obtained

using the additional geometrical constraint) and the

sharp fin construct is significant: 11.3%.

The optimal shape for the titanium and the unit-con-

ductivity fins starting from the guess that leads to sharp-

pointed fins in the highly conductive case is the same as

the one in Fig. 7. The low-conductivity fins prefer shapes

with convex tips.

4.5. Shape dependence on the conductivity parameters

We notice that starting from the same guess SG, the

high conductivity material converges to a shape different

from the low conductivity one. An improved shape is

obtained from the SG guess (sharp tip) than from the

RG guess (blunt tip) for the highly conductive material.

The sharp-tip cross-section for the unit-cell fin is well de-

scribed by a parabolic profile, which has, in general,

higher efficiency than triangular or rectangular profiles

(see [18, p. 409]).

The importance of our result is in automatically gen-

erating optimal shape profiles for the fins as well as the

spacing between the individual fins for maximized effi-

ciency. We could do even better in terms of the spacing

by having the outer limit of the boundary layer from one

fin ‘‘just touch’’ the one from the adjacent fin. Our use of

a function for describing the profile of the cross-section

prevents us from reaching such a shape. We are cur-

rently investigating the use of a general curve instead

of a function for approximating the profile of the fin.
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Fig. 7. Imposing the additional constraint of zero slope at the

ends of the fins, we virtually eliminate the overlap of the

boundary layer in the periodic array of fins. The objective

function value in this case is the true amount of heat-flux

passing through the fin. (a) Final shape of unit-cell for

aluminum fin starting from the RG. A constraint of zero slope

of the boundary at the ends of the fin is imposed. (b) The

periodic array of aluminum fins for the RG initial shape. For

highly conductive materials, this shape is less efficient than that

in Fig. 6(b).
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5. Conclusions and future work

In this paper we advanced a method for automati-

cally determining the optimal shape and configuration

or spacing between fins in a cooling fin array under nat-

ural convection conditions and we determined a connec-

tion between shape and conductivity parameters.

We employed the element-free Galerkin (EFG)

method as the analysis method for solving the heat equa-

tions for every iteration of the shape optimization setup.

The goal was to provide a scheme for automatically

determining the optimal shape of a conduction–diffusion

system and note the shape dependence on the conductiv-

ity parameters. We formulated a general framework

based on a meshfree solution of the non-linear heat-

transfer equations coupled with a gradient-based algo-

rithm for constrained optimization to determine the

characteristics of the optimal shapes for varying conduc-

tivity parameters. We solved the optimal shape problem
in the context of laminar flow for natural convection.

Other types of conditions can be considered using the

current development.

We allowed flexibility in determining the best shape

for the individual fins and we also automatically found

the optimal spacing between them. We used a starting

shape an unfinned shape with a rectangular cross-section

and in few iterations obtain the fin shape. The array of

fins was built using periodic boundary conditions.

Highly conductive fins end up in sharp-pointed thin fins

whereas low conductivity fins converge to thicker,

rounded-tip fins. These results seem to correlate to the

optimal shapes seen in natural systems that perform un-

der similar conditions: intestinal villi in mass transfer

(blunt tip and wide base) and stegosaurus plates (long

and thin cross-section). This correlation suggests that

intestinal villi have a low mass diffusivity (relative to

their mass transfer coefficient) while stegosaurus fins

have a large thermal conductivity (relative to their heat

transfer coefficient).

In this work we used a one-dimensional directional

change of the shape design variables. To implement a

more general motion and transformation of the design-

able boundary we are currently investigating a meshfree

solution in the context of the fictitious domain method.

The high smoothness of the approximation functions in

the meshfree approach can eliminate the difficulties

faced by the FEM, which leads to non-differentiability

of the objective function.
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[28] R.T. Haftka, Z. Gürdal, Elements of Structural Optimiza-

tion: Third Revised and Expanded Edition, Kluwer Aca-

demic Publishers, 1992.

[29] F.M. White, Heat and Mass Transfer, Addison-Wesley,

1988.

[30] J.S. Chen, C. Pan, C.T. Wu, W.K. Liu, Reproducing

kernel particle methods for large deformation analysis of

non-linear structures, Comput. Meth. Appl. Mech. Eng.

139 (1996) 195–227.

[31] F. Bobaru, S. Rachakonda, An ill-posed problem in

inverse optimal shape design of cooling fins and its

regularization, in: Proceedings of the Second MIT Con-

ference on Computational Fluid and Solid Mechanics,

MIT campus, Cambridge, MA, USA, 17–20 June 2003.

[32] F. Bobaru, Stegosaurus plates, intestinal villi, and optimal

shapes of cooling fins, submitted for publication.

http://www.vni.com
http://www.vni.com

	Optimal shape profiles for cooling fins of high and low conductivity
	Introduction and paper organization
	Previous work
	Optimal shapes in nature
	Thermal fins and meshfree methods for optimal shape design
	The thermal boundary layer and optimal shape design

	Problem description
	The shape optimization setup and the boundary layer constraint
	The meshfree solution for the non-linear heat-transfer equations

	Optimal shapes for high and low conductivity parameters
	Relation to optimal shapes of biological systems in mass transfer problems
	Numerical tests and results
	Connection to shapes of biological systems
	Eliminating the boundary layer overlap for the periodic fin array
	Shape dependence on the conductivity parameters

	Acknowledgments
	References


